AMP-activated protein kinase signaling results in cytoplasmic sequestration of p27.

نویسندگان

  • John D Short
  • Kevin D Houston
  • Ruhee Dere
  • Sheng-Li Cai
  • Jinhee Kim
  • Charles L Johnson
  • Russell R Broaddus
  • Jianjun Shen
  • Susie Miyamoto
  • Fuyuhiko Tamanoi
  • David Kwiatkowski
  • Gordon B Mills
  • Cheryl Lyn Walker
چکیده

Tuberin, the Tsc2 gene product, integrates the phosphatidylinositol 3-kinase/mitogen-activated protein kinase (mitogenic) and LKB1/AMP-activated protein kinase (AMPK; energy) signaling pathways, and previous independent studies have shown that loss of tuberin is associated with elevated AMPK signaling and altered p27 function. In Tsc2-null tumors and tumor-derived cells from Eker rats, we observed elevated AMPK signaling and concordant cytoplasmic mislocalization of p27. Cytoplasmic localization of p27 in Tsc2-null cells was reversible pharmacologically using inhibitors of the LKB1/AMPK pathway, and localization of p27 to the cytoplasm could be induced directly by activating AMPK physiologically (glucose deprivation) or genetically (constitutively active AMPK) in Tsc2-proficient cells. Furthermore, AMPK phosphorylated p27 in vitro on at least three sites including T170 near the nuclear localization signal, and T170 was shown to determine p27 localization in response to AMPK signaling. p27 functions in the nucleus to suppress cyclin-dependent kinase-2 (Cdk2) activity and has been reported to mediate an antiapoptotic function when localized to the cytoplasm. We found that cells with elevated AMPK signaling and cytoplasmic p27 localization exhibited elevated Cdk2 activity, which could be suppressed by inhibiting AMPK signaling. In addition, cells with elevated AMPK signaling and cytoplasmic p27 localization were resistant to apoptosis, which could be overcome by inhibition of AMPK signaling and relocalization of p27 to the nucleus. These data show that AMPK signaling determines the subcellular localization of p27, and identifies loss of integration of pathways controlling energy balance, the cell cycle, and apoptosis due to aberrant AMPK and p27 function as a feature of cells that have lost the Tsc2 tumor suppressor gene.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inactivation of mitogen-activated protein kinase signaling pathway reduces caspase-14 expression in impaired keratinocytes

Objective(s):Several investigations have revealed that caspase-14 is responsible for the epidermal differentiation and cornification, as well as the regulation of moisturizing effect. However, the precise regulation mechanism is still not clear. This study was aimed to investigate the expression of caspase-14 in filaggrin-deficient normal human epidermal keratinocytes (NHEKs) and to explore the...

متن کامل

Regulation of autophagy by AMP-activated protein kinase/ sirtuin 1 pathway reduces spinal cord neurons damage

Objective(s): AMP-activated protein kinase/sirtuin 1 (AMPK/SIRT1) signaling pathway has been proved to be involved in the regulation of autophagy in various models. The aim of this study was to evaluate the effect of AMPK/SIRT1 pathway on autophagy after spinal cord injury (SCI). Materials and Methods:The SCI model was established in rats in vivo and the primary spinal cord neurons were subject...

متن کامل

The Effect of Eight Weeks Aerobic and Resistance Training on AMP-Activated Protein Kinase (AMPK) Gene Expression in Soleus Muscle and Insulin Resistance of STZ-Induced Diabetic Rat

Background: AMPK regulation is one of biggest target in T2D and metabolic syndrome research. Therefore, the present study is aimed to investigate The effect of 8 weeks aerobic and Resistance training on AMP-activated protein kinase (AMPK) gene expression in soleus muscle and insulin resistance of STZ-induced diabetic rat. Methods: The research method of present study was experimental. For this...

متن کامل

The Implication of Androgens in the Presence of Protein Kinase C to Repair Alzheimer’s Disease-Induced Cognitive Dysfunction

Aging, as a major risk factor of memory deficiency, affects neural signaling pathways in hippocampus. In particular, age-dependent androgens deficiency causes cognitive impairments. Several enzymes like protein kinase C (PKC) are involved in memory deficiency. Indeed, PKC regulatory process mediates α-secretase activation to cleave APP in β-amyloid cascade and tau proteins phosphorylation mecha...

متن کامل

Dual effects of Ral-activated pathways on p27 localization and TGF-β signaling

Constitutive activation or overactivation of Ras signaling pathways contributes to epithelial tumorigenesis in several ways, one of which is cytoplasmic mislocalization of the cyclin-dependent kinase inhibitor p27(Kip1) (p27). We previously showed that such an effect can be mediated by activation of the Ral-GEF pathway by oncogenic N-Ras. However, the mechanism(s) leading to p27 cytoplasmic acc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer research

دوره 68 16  شماره 

صفحات  -

تاریخ انتشار 2008